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Photoinduced Coupling Reaction of 
5-Bromouridine to Tryptophan Derivatives1 

Sir: 

The replacement of thymine in DNA by 5-bromouracil 
sensitizes bacterial and mammalian cells to the lethal effects 
of UV light.2 The photochemical mechanism responsible for 
this sensitizing effect has been studied extensively, and at least 
three possible mechanisms have been suggested: (1) self-cou­
pling of two 5-bromouracil residues with formation of 5-5'-
diuracilyl linkages;3 (2) induction of single-strand breaks in 
DNA;2b '4 (3) enhancement in the rate of production of 
DNA-protein cross-links in cells.5 Recently, DNA substituted 
with bromouracil has been reported to undergo photoinduced 
cross-linking to RNA polymerase6 and to lac repressor.6,7 In 
spite of the importance of the cross-linking of DNA containing 
5-bromouracil to proteins,8 very little is known about the nature 
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Figure 1. Structure of 3 as determined by 13C NMR in Me2CO-d6. 
Chemical shifts are in parts per million from Me4Si. 

of the amino acid-nucleic acid adducts. Sulfhydryl compounds 
such as cysteine and glutathione have been reported to undergo 
photoaddition with 5-bromouracil.9 We now wish to report that 
iVb-acetyltryptophan methyl ester, a model for tryptophan in 
a protein, undergoes a photoreaction with 5-bromouridine or 
5-bromo-1,3-dimethyluracil to give the corresponding coupled 
product in a highly regiospecific fashion.10 Neither /V-acet-
yltyrosine methyl ester nor A^-acetylhistidine methyl ester 
undergoes such a coupling reaction. 

Acetone-sensitized irradiation12 of 2',3',0-isopropyli-
dene-5-bromouridine (1,1.4 mM) in acetone-acetonitrile (1:3) 
in the presence of 7Vb-acetyltryptophan methyl ester (2, 3.5 
mM) produced a single photoproduct. No other products, 
except the unreacted starting materials 1 and 2, were detected 
on TLC. Separation by column chromatography on silica gel 
yielded 3, mp 158-162 0 C dec, in 70% yield. Spectral proper­
ties,13 including the 13C N M R spectrum14 (Figure 1), are in 
accordance with the assigned structure. 

Under similar conditions, acetone-sensitized irradiation12 

of 5-bromo-1,3-dimethyluracil (4, 1.5 mM) and 2 (3.5 mM) 
in acetonitrile gave rise to the coupled product 515 (67%) as the 
sole product.16 Quantum yield for the formation of 5 is 0.018.17 

In control runs, irradiation of a solution of 4 and 2 in acetoni­
trile in the absence of acetone did not produce 5, and both 
starting materials were recovered unchanged. Direct irradia­
tion of 4 (2.0 mM) and 2 (4.6 mM) in acetonitrile with 254-nm 
light resulted in the formation of the debrominated product 
1,3-dimethyluracil (6, 75%) as the major product, together 
with minor amounts of 5 (15%).19 Addition of 1,3-pentadiene 
to the system inhibited the formation of the coupled product 
5, but had no significant effect on the formation of 6. The 
bromouracil derivative 4 undergoes regiospecific coupling 
reaction with various indolic compounds. For example, ace-

n ^ 

b 

i 

6 

0 0 

X 
H3C CH3 

R2-H R 3-Br 

1 2 RX.R -CH3 

R3-Br 

1 2 
R ^ R - C H , 

9 , R-CH2CH2CO2CH3 

5, R - R - C H 3 

R4-CH2CHC02CH3 

8, R - R - R - C H , 

R -CH.CH.CO CH 

0002-7863/78/1500-2901 $01.00/0 ©1978 American Chemical Society 



2902 Journal of the American Chemical Society / 100:9 / April 26, 1978 

tone-sensitized irradiation of 4 in the presence of 3-methylin-
dole (7) gave 820 (66%), whereas direct irradiation of 4 and 
methyl indole-3-propionate (9) with 254-nm light resulted in 
the formation of 6 (60%) and 1021 (15%). 

Electrophilic substitution22 usually occurs predominantly 
at the 3 position of indoles, whereas radical reactions,23 in­
cluding several photoinduced reactions,24 proceed less selec­
tively to give mixture of 1-, 2-, 3-, 4-, and 6-substituted indoles. 
In the present case, however, the coupling reactions occurred 
exclusively on the 2 position of the indole molecules. The 
benzenoid ring was not attacked. Such a preferential attack 
on the 2 position has been observed in certain photoadditions25 

or in anodic cyanation,26 where an electron-transfer process 
is believed to be involved.27 

Under conditions in which 1 reacted smoothly with 2, both 
1 and 4 were photochemically inert toward derivatives of other 
aromatic amino acids such as /V-acetylhistidine methyl ester 
or JV-acetyltyrosine methyl ester. Thus, the photochemical 
coupling reaction is specific for tryptophan. A similar coupling 
may take place between bromouracil-substituted DNA and 
tryptophyl residues in a protein. Thus, the coupling reactions 
reported here may serve as a useful model for the study of the 
lethal effects of UV light on cells. Moreover, because of its high 
selectivity, regiospecificity, and efficiency, the present reaction 
constitutes a useful synthetic method for the introduction of 
indolyl groups into the 5 position of uracil or uridine. Mecha­
nistic aspects and other synthetic applications of this new type 
of photochemical coupling reactions are under study. 
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Gas Phase Photodissociation of C7H7+ 

Sir: 

The CyH7+ cation continues to present a challenging 
structural problem to mass spectroscopists. Extensive mass 
spectroscopic1-4 and ion photodissociation5 results using spe­
cifically labeled precursors (2H, 13C) show that hydrogen and 
carbon scrambling occur to a large degree in the formation and 
fragmentation of CJHJ+. Such results are suggestive of the 
symmetrical tropylium ion (I). On the other hand, ions having 

CH2
+ 

I II 
enough internal energy to fragment will undoubtedly undergo 
molecular rearrangement prior to dissociation and therefore 
may not reflect the ground state structure or stability of the 
ion. Studies utilizing collisional activation (CA) or collision 
induced dissociation (CID) techniques, generally believed to 
yield ground-state structural information, have indicated that 
C7H7+ obtained from toluene, for example, is a mixture of 
isomers possibly undergoing interconversion.6 These tech­
niques, however, by their very nature may also promote 
scrambling prior to dissociation and detection and, in addition, 
sample ions that may have lifetimes only on the order of 10 -5 

s. 
The most convincing evidence for the long-lived existence 

of more than one cyclic isomer of C7H74" in the gas phase 
comes from ion-molecule reaction studies using ion cyclotron 
resonance (ICR) spectroscopy.7"9 Shen et al.7 concluded from 
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